Paul Lane Paul Lane
0 Course Enrolled • 0 Course CompletedBiography
試験の準備方法-効果的なMLS-C01問題サンプル試験-素晴らしいMLS-C01資格勉強
P.S. MogiExamがGoogle Driveで共有している無料かつ新しいMLS-C01ダンプ:https://drive.google.com/open?id=1SixE_mn4lBpktF8aYe9Pc0sObV2bn1JV
試験のMLS-C01テスト問題を学習して準備するのに必要な時間は20〜30時間だけで、時間とエネルギーを節約できます。あなたが学生であっても、学校での学習、仕事、その他の重要なことで忙しく、AWS Certified Machine Learning - Specialty学習に時間を割くことができないインサービススタッフであっても。ただし、MLS-C01試験の教材を購入すると、時間と労力を節約し、主に最も重要なことに集中できます。そして、最も重要なMLS-C01試験トレントを最短時間で習得し、最後に優れたMLS-C01学習準備でMLS-C01試験に合格することができます。
Amazon MLS-C01 認定試験は、機械学習のコンセプトとベストプラクティスを包括的に理解することが必要な、難易度の高い試験です。試験は、教師あり学習、教師なし学習、ディープラーニング、強化学習、自然言語処理、コンピュータビジョンなど、広範囲なトピックをカバーしています。また、候補者は、Amazon SageMaker、Amazon Rekognition、Amazon Comprehendなど、機械学習モデルを構築および展開するために使用されるAWSサービスとツールについても、堅固な理解を持っていることが期待されています。
AWS認定機械学習 - 専門認定試験は、データの準備、機能エンジニアリング、モデリング、チューニング、展開など、機械学習に関連するさまざまなトピックをカバーしています。また、ディープラーニング、強化学習、自然言語処理などのトピックも含まれています。この試験は、機械学習の概念を実際のシナリオに適用し、AWSプラットフォームで機械学習ソリューションを実装する習熟度を評価する候補者の能力をテストするように設計されています。
Amazon MLS-C01試験は、AWS上の機械学習に関連するさまざまなトピックをカバーしています。これらのトピックには、データエンジニアリング、探索的データ分析、特徴量エンジニアリング、モデルの選択とトレーニング、最適化技術、機械学習モデルの展開と運用化などが含まれます。この試験はまた、Amazon SageMaker、Amazon S3、Amazon EC2、Amazon EMRなどの重要なAWSサービスもカバーしています。
試験MLS-C01問題サンプル & 一生懸命にMLS-C01資格勉強 | 一番優秀なMLS-C01赤本合格率
MLS-C01クイズトレントブースト3バージョンには、PDFバージョン、PCバージョン、アプリオンラインバージョンが含まれます。バージョンが異なると、機能や使用方法が異なります。たとえば、PDFバージョンは、MLS-C01試験トレントをダウンロードして印刷するのに便利で、学習を閲覧するのに簡単で適しています。また、MLS-C01クイズトレントのPCバージョンは、実際の試験のシナリオを刺激することができ、Windowsオペレーティングシステムで停止します。Amazon独自のAWS Certified Machine Learning - Specialty試験刺激テストのスコアと、MLS-C01試験トレントをマスターしたかどうかをいつでもテストできます。
Amazon AWS Certified Machine Learning - Specialty 認定 MLS-C01 試験問題 (Q110-Q115):
質問 # 110
A retail company is ingesting purchasing records from its network of 20,000 stores to Amazon S3 by using Amazon Kinesis Data Firehose. The company uses a small, server-based application in each store to send the data to AWS over the internet. The company uses this data to train a machine learning model that is retrained each day. The company's data science team has identified existing attributes on these records that could be combined to create an improved model.
Which change will create the required transformed records with the LEAST operational overhead?
- A. Launch a fleet of Amazon EC2 instances that include the transformation logic. Configure the EC2 instances with a daily cron job to transform the records that accumulate in Amazon S3. Deliver the transformed records to Amazon S3.
- B. Deploy an Amazon S3 File Gateway in the stores. Update the in-store software to deliver data to the S3 File Gateway. Use a scheduled daily AWS Glue job to transform the data that the S3 File Gateway delivers to Amazon S3.
- C. Deploy an Amazon EMR cluster that runs Apache Spark and includes the transformation logic. Use Amazon EventBridge (Amazon CloudWatch Events) to schedule an AWS Lambda function to launch the cluster each day and transform the records that accumulate in Amazon S3. Deliver the transformed records to Amazon S3.
- D. Create an AWS Lambda function that can transform the incoming records. Enable data transformation on the ingestion Kinesis Data Firehose delivery stream. Use the Lambda function as the invocation target.
正解:D
質問 # 111
A company is converting a large number of unstructured paper receipts into images. The company wants to create a model based on natural language processing (NLP) to find relevant entities such as date, location, and notes, as well as some custom entities such as receipt numbers.
The company is using optical character recognition (OCR) to extract text for data labeling. However, documents are in different structures and formats, and the company is facing challenges with setting up the manual workflows for each document type. Additionally, the company trained a named entity recognition (NER) model for custom entity detection using a small sample size. This model has a very low confidence score and will require retraining with a large dataset.
Which solution for text extraction and entity detection will require the LEAST amount of effort?
- A. Extract text from receipt images by using a deep learning OCR model from the AWS Marketplace. Use Amazon Comprehend for entity detection, and use Amazon Comprehend custom entity recognition for custom entity detection.
- B. Extract text from receipt images by using Amazon Textract. Use the Amazon SageMaker BlazingText algorithm to train on the text for entities and custom entities.
- C. Extract text from receipt images by using a deep learning OCR model from the AWS Marketplace. Use the NER deep learning model to extract entities.
- D. Extract text from receipt images by using Amazon Textract. Use Amazon Comprehend for entity detection, and use Amazon Comprehend custom entity recognition for custom entity detection.
正解:D
解説:
The best solution for text extraction and entity detection with the least amount of effort is to use Amazon Textract and Amazon Comprehend. These services are:
Amazon Textract for text extraction from receipt images. Amazon Textract is a machine learning service that can automatically extract text and data from scanned documents. It can handle different structures and formats of documents, such as PDF, TIFF, PNG, and JPEG, without any preprocessing steps. It can also extract key-value pairs and tables from documents1 Amazon Comprehend for entity detection and custom entity detection. Amazon Comprehend is a natural language processing service that can identify entities, such as dates, locations, and notes, from unstructured text. It can also detect custom entities, such as receipt numbers, by using a custom entity recognizer that can be trained with a small amount of labeled data2 The other options are not suitable because they either require more effort for text extraction, entity detection, or custom entity detection. For example:
Option A uses the Amazon SageMaker BlazingText algorithm to train on the text for entities and custom entities. BlazingText is a supervised learning algorithm that can perform text classification and word2vec. It requires users to provide a large amount of labeled data, preprocess the data into a specific format, and tune the hyperparameters of the model3 Option B uses a deep learning OCR model from the AWS Marketplace and a NER deep learning model for text extraction and entity detection. These models are pre-trained and may not be suitable for the specific use case of receipt processing. They also require users to deploy and manage the models on Amazon SageMaker or Amazon EC2 instances4 Option D uses a deep learning OCR model from the AWS Marketplace for text extraction. This model has the same drawbacks as option B. It also requires users to integrate the model output with Amazon Comprehend for entity detection and custom entity detection.
References:
1: Amazon Textract - Extract text and data from documents
2: Amazon Comprehend - Natural Language Processing (NLP) and Machine Learning (ML)
3: BlazingText - Amazon SageMaker
4: AWS Marketplace: OCR
質問 # 112
A company is launching a new product and needs to build a mechanism to monitor comments about the company and its new product on social medi a. The company needs to be able to evaluate the sentiment expressed in social media posts, and visualize trends and configure alarms based on various thresholds.
The company needs to implement this solution quickly, and wants to minimize the infrastructure and data science resources needed to evaluate the messages. The company already has a solution in place to collect posts and store them within an Amazon S3 bucket.
What services should the data science team use to deliver this solution?
- A. Train a model in Amazon SageMaker by using the BlazingText algorithm to detect sentiment in the corpus of social media posts. Expose an endpoint that can be called by AWS Lambda. Trigger a Lambda function when posts are added to the S3 bucket to invoke the endpoint and record the sentiment in an Amazon DynamoDB table and in a custom Amazon CloudWatch metric. Use CloudWatch alarms to notify analysts of trends.
- B. Train a model in Amazon SageMaker by using the semantic segmentation algorithm to model the semantic content in the corpus of social media posts. Expose an endpoint that can be called by AWS Lambda. Trigger a Lambda function when objects are added to the S3 bucket to invoke the endpoint and record the sentiment in an Amazon DynamoDB table. Schedule a second Lambda function to query recently added records and send an Amazon Simple Notification Service (Amazon SNS) notification to notify analysts of trends.
- C. Trigger an AWS Lambda function when social media posts are added to the S3 bucket. Call Amazon Comprehend for each post to capture the sentiment in the message and record the sentiment in a custom Amazon CloudWatch metric and in S3. Use CloudWatch alarms to notify analysts of trends.
- D. Trigger an AWS Lambda function when social media posts are added to the S3 bucket. Call Amazon Comprehend for each post to capture the sentiment in the message and record the sentiment in an Amazon DynamoDB table. Schedule a second Lambda function to query recently added records and send an Amazon Simple Notification Service (Amazon SNS) notification to notify analysts of trends.
正解:A
質問 # 113
A company wants to enhance audits for its machine learning (ML) systems. The auditing system must be able to perform metadata analysis on the features that the ML models use. The audit solution must generate a report that analyzes the metadata. The solution also must be able to set the data sensitivity and authorship of features.
Which solution will meet these requirements with the LEAST development effort?
- A. Use Amazon SageMaker Features Store to apply custom algorithms to analyze the feature-level metadata that the company requires. Create an Amazon DynamoDB table to store feature-level metadata. Use Amazon QuickSight to analyze the metadata.
- B. Use Amazon SageMaker Feature Store to select the features. Create a data flow to perform feature-level metadata analysis. Create an Amazon DynamoDB table to store feature-level metadata. Use Amazon QuickSight to analyze the metadata.
- C. Use Amazon SageMaker Feature Store to set feature groups for the current features that the ML models use. Assign the required metadata for each feature. Use SageMaker Studio to analyze the metadata.
- D. Use Amazon SageMaker Feature Store to set feature groups for the current features that the ML models use. Assign the required metadata for each feature. Use Amazon QuickSight to analyze the metadata.
正解:D
解説:
The solution that will meet the requirements with the least development effort is to use Amazon SageMaker Feature Store to set feature groups for the current features that the ML models use, assign the required metadata for each feature, and use Amazon QuickSight to analyze the metadata. This solution can leverage the existing AWS services and features to perform feature-level metadata analysis and reporting.
Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, update, search, and share machine learning (ML) features. The service provides feature management capabilities such as enabling easy feature reuse, low latency serving, time travel, and ensuring consistency between features used in training and inference workflows. A feature group is a logical grouping of ML features whose organization and structure is defined by a feature group schema. A feature group schema consists of a list of feature definitions, each of which specifies the name, type, and metadata of a feature. The metadata can include information such as data sensitivity, authorship, description, and parameters. The metadata can help make features discoverable, understandable, and traceable. Amazon SageMaker Feature Store allows users to set feature groups for the current features that the ML models use, and assign the required metadata for each feature using the AWS SDK for Python (Boto3), AWS Command Line Interface (AWS CLI), or Amazon SageMaker Studio1.
Amazon QuickSight is a fully managed, serverless business intelligence service that makes it easy to create and publish interactive dashboards that include ML insights. Amazon QuickSight can connect to various data sources, such as Amazon S3, Amazon Athena, Amazon Redshift, and Amazon SageMaker Feature Store, and analyze the data using standard SQL or built-in ML-powered analytics. Amazon QuickSight can also create rich visualizations and reports that can be accessed from any device, and securely shared with anyone inside or outside an organization. Amazon QuickSight can be used to analyze the metadata of the features stored in Amazon SageMaker Feature Store, and generate a report that summarizes the metadata analysis2.
The other options are either more complex or less effective than the proposed solution. Using Amazon SageMaker Data Wrangler to select the features and create a data flow to perform feature-level metadata analysis would require additional steps and resources, and may not capture all the metadata attributes that the company requires. Creating an Amazon DynamoDB table to store feature-level metadata would introduce redundancy and inconsistency, as the metadata is already stored in Amazon SageMaker Feature Store. Using SageMaker Studio to analyze the metadata would not generate a report that can be easily shared and accessed by the company.
References:
1: Amazon SageMaker Feature Store - Amazon Web Services
2: Amazon QuickSight - Business Intelligence Service - Amazon Web Services
質問 # 114
A Data Scientist needs to create a serverless ingestion and analytics solution for high-velocity, real-time streaming data.
The ingestion process must buffer and convert incoming records from JSON to a query-optimized, columnar format without data loss. The output datastore must be highly available, and Analysts must be able to run SQL queries against the data and connect to existing business intelligence dashboards.
Which solution should the Data Scientist build to satisfy the requirements?
- A. Use Amazon Kinesis Data Analytics to ingest the streaming data and perform real-time SQL queries to convert the records to Apache Parquet before delivering to Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.
- B. Write each JSON record to a staging location in Amazon S3. Use the S3 Put event to trigger an AWS Lambda function that transforms the data into Apache Parquet or ORC format and writes the data to a processed data location in Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena, and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.
- C. Create a schema in the AWS Glue Data Catalog of the incoming data format. Use an Amazon Kinesis Data Firehose delivery stream to stream the data and transform the data to Apache Parquet or ORC format using the AWS Glue Data Catalog before delivering to Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena, and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.
- D. Write each JSON record to a staging location in Amazon S3. Use the S3 Put event to trigger an AWS Lambda function that transforms the data into Apache Parquet or ORC format and inserts it into an Amazon RDS PostgreSQL database. Have the Analysts query and run dashboards from the RDS database.
正解:C
解説:
To create a serverless ingestion and analytics solution for high-velocity, real-time streaming data, the Data Scientist should use the following AWS services:
* AWS Glue Data Catalog: This is a managed service that acts as a central metadata repository for data assets across AWS and on-premises data sources. The Data Scientist can use AWS Glue Data Catalog to create a schema of the incoming data format, which defines the structure, format, and data types of the JSON records. The schema can be used by other AWS services to understand and process the data1.
* Amazon Kinesis Data Firehose: This is a fully managed service that delivers real-time streaming data to destinations such as Amazon S3, Amazon Redshift, Amazon Elasticsearch Service, and Splunk. The Data Scientist can use Amazon Kinesis Data Firehose to stream the data from the source and transform the data to a query-optimized, columnar format such as Apache Parquet or ORC using the AWS Glue Data Catalog before delivering to Amazon S3. This enables efficient compression, partitioning, and fast analytics on the data2.
* Amazon S3: This is an object storage service that offers high durability, availability, and scalability.
The Data Scientist can use Amazon S3 as the output datastore for the transformed data, which can be organized into buckets and prefixes according to the desired partitioning scheme. Amazon S3 also integrates with other AWS services such as Amazon Athena, Amazon EMR, and Amazon Redshift Spectrum for analytics3.
* Amazon Athena: This is a serverless interactive query service that allows users to analyze data in Amazon S3 using standard SQL. The Data Scientist can use Amazon Athena to run SQL queries against the data in Amazon S3 and connect to existing business intelligence dashboards using the Athena Java Database Connectivity (JDBC) connector. Amazon Athena leverages the AWS Glue Data Catalog to access the schema information and supports formats such as Parquet and ORC for fast and cost-effective queries4.
1: What Is the AWS Glue Data Catalog? - AWS Glue
2: What Is Amazon Kinesis Data Firehose? - Amazon Kinesis Data Firehose
3: What Is Amazon S3? - Amazon Simple Storage Service
4: What Is Amazon Athena? - Amazon Athena
質問 # 115
......
最高のサービスを提供することを義務と考えています。 そのため、患者の同僚が24時間年中無休でサポートを提供し、MLS-C01実践教材に関する問題をすべて解決します。 あなたが私たちを必要とする限り、私たちは思いやりのあるサービスを提供しています。 それに、一生懸命努力しながら失敗することは不名誉ではありません。 残念ながらMLS-C01スタディガイドで試験に不合格になった場合、他のバージョンに切り替えるか、今回は不合格であると仮定して全額返金し、不合格書類で証明します。 あなたの能力を過小評価しないでください。MLS-C01の実際のテストを試みている間、私たちはあなたの最強のバックアップになります。
MLS-C01資格勉強: https://www.mogiexam.com/MLS-C01-exam.html
- 試験の準備方法-効率的なMLS-C01問題サンプル試験-便利なMLS-C01資格勉強 ⚔ 《 www.goshiken.com 》を入力して《 MLS-C01 》を検索し、無料でダウンロードしてくださいMLS-C01受験内容
- MLS-C01日本語認定 🥏 MLS-C01試験解説 💑 MLS-C01参考書内容 📥 ▷ www.goshiken.com ◁から( MLS-C01 )を検索して、試験資料を無料でダウンロードしてくださいMLS-C01専門トレーリング
- 試験の準備方法-最新のMLS-C01問題サンプル試験-高品質なMLS-C01資格勉強 🥉 Open Webサイト「 www.pass4test.jp 」検索▛ MLS-C01 ▟無料ダウンロードMLS-C01専門トレーリング
- 試験の準備方法-信頼できるMLS-C01問題サンプル試験-有効的なMLS-C01資格勉強 🥠 ⇛ www.goshiken.com ⇚で使える無料オンライン版[ MLS-C01 ] の試験問題MLS-C01専門知識訓練
- MLS-C01 試験に役立つポイントをわかりやすく解説 😝 ☀ jp.fast2test.com ️☀️を入力して▶ MLS-C01 ◀を検索し、無料でダウンロードしてくださいMLS-C01資格模擬
- MLS-C01試験の準備方法|最新のMLS-C01問題サンプル試験|実際的なAWS Certified Machine Learning - Specialty資格勉強 🛌 ⮆ www.goshiken.com ⮄サイトで▶ MLS-C01 ◀の最新問題が使えるMLS-C01専門知識訓練
- MLS-C01復習解答例 🥼 MLS-C01難易度受験料 👨 MLS-C01過去問無料 🤸 ( www.passtest.jp )で➽ MLS-C01 🢪を検索し、無料でダウンロードしてくださいMLS-C01認定資格
- MLS-C01試験解説 🤛 MLS-C01資格模擬 😏 MLS-C01資格模擬 👾 今すぐ{ www.goshiken.com }で⮆ MLS-C01 ⮄を検索し、無料でダウンロードしてくださいMLS-C01対応資料
- 試験の準備方法-信頼できるMLS-C01問題サンプル試験-有効的なMLS-C01資格勉強 🔕 《 www.pass4test.jp 》で使える無料オンライン版⇛ MLS-C01 ⇚ の試験問題MLS-C01参考書内容
- 最新なMLS-C01試験参考書、順調にAWS Certified Machine Learning - Specialty試験関連の証明書が取られる。 📷 ➥ www.goshiken.com 🡄は、《 MLS-C01 》を無料でダウンロードするのに最適なサイトですMLS-C01トレーニング
- MLS-C01無料問題 🐽 MLS-C01認定資格 👽 MLS-C01過去問無料 😳 最新「 MLS-C01 」問題集ファイルは➥ www.pass4test.jp 🡄にて検索MLS-C01ブロンズ教材
- www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, morindigiacad.online, graaphi.com, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, shortcourses.russellcollege.edu.au, montazer.co, daotao.wisebusiness.edu.vn, daotao.wisebusiness.edu.vn, Disposable vapes
無料でクラウドストレージから最新のMogiExam MLS-C01 PDFダンプをダウンロードする:https://drive.google.com/open?id=1SixE_mn4lBpktF8aYe9Pc0sObV2bn1JV
